A Very Short, and Asymmetrical, Hydrogen Bond in the Structure of $Na_3H(SO_4)_2$ and S-OH vs O-H…O Correlation

By Michele Catti, Giovanni Ferraris and Gabriella Ivaldi

Istituto di Mineralogia, Cristallografia e Geochimica 'G. Spezia' dell'Università di Torino, via San Massimo 24, 10123 Torino, Italy

(Received 7 June 1978; accepted 16 November 1978)

Abstract

 $Na_{3}H(SO_{4})_{2}$ crystallizes in space group $P2_{1}/c$ with a = $8.648(1), b = 9.648(1), c = 9.143(1) \text{ Å}, \beta =$ $108.77 (1)^{\circ}$, Z = 4. The structure was anisotropically (except the H atom) refined to R = 0.034 for 1403 counter reflexions. An indexed X-ray powder spectrum is given. The structure is dominated by a framework of Na coordination polyhedra built up by the intersection of two non-coplanar systems of chains and, to some extent, condensed into (010) layers. The S tetrahedra are approximately close packed in (010) layers and form $(SO_4H.SO_4)^{3-}$ dimers via a very short asymmetrical hydrogen bond with $O \cdots O = 2.434$ (4), O-H= 1.03 (6) Å and $\angle O - H \cdots O = 177$ (4)°. Through the analysis of published data, a linear correlation between the length of S-OH and that of the corresponding O····O hydrogen bond is found. Empirical correlations concerning the geometry and the bond valence in the S tetrahedra are applied and discussed.

Introduction

Trisodium hydrogen disulphate was accidentally obtained at about 353 K during the preparation of NaHSO₄.H₂O (matteuccite) (Catti, Ferraris & Franchini-Angela, 1975), and was later prepared according to Faust & Esselmann (1926). Its structural study seemed worthwhile as a part of the research on hydrogen bonding (Catti, Ferraris & Ivaldi, 1978), in order to extend our investigation to simple inorganic salts containing oxyanions with different acidity. In fact, by analogy with the acid salts of carboxylic acids studied by J. C. Speakman and co-workers (McGregor, Speakman & Lehmann, 1977), this type of salt could be particularly inclined to display unusual behaviour of the acidic H atoms, such as involvement in very short or disordered bonds.

Among the small group of such inorganic compounds hitherto studied, a series of six ferroelectric alkali trihydrogenselenites (Chomnilpan, Tellgren & Liminga, 1978) and the ferroelectric $(NH_4)_3H(SO_4)_2$

0567-7408/79/030525-05\$01.00

(Suzuki & Makita, 1978) show disordered and/or apparently symmetrical hydrogen bonds. $KH_5(PO_4)_2$ (Philippot, Richard, Roudault & Maurin, 1972) was one of the first examples found to show quasisymmetrical hydrogen bonds (Catti & Ferraris, 1974*a*), and the $H(NO_3)_2^-$ anion was found to be involved in hydrogen bonds of quite different lengths (Williams, Dowling, Gunde, Hadži & Orel, 1976). Salts of the same type, but with a more complex composition, appear without special features, *e.g.* $(NH_3)_5CO_2^ Co(NH_3)_5SO_4(HSO_4)_3$ (Schaefer & Marsh, 1966), $[Ag(C_6H_{16}N_{10})]SO_4HSO_4.H_2O$ (Coghi & Pelizzi, 1975), Ca₅(HASO₄)₂(AsO₄)₂ tetra- (Ferraris & Abbona, 1972) and nona-hydrated (Catti & Ferraris, 1974*b*).

Experimental

Na₃H(SO₄)₂ was identified by comparison with the un-indexed X-ray powder spectrum reported on card 2-0294 of the ASTM X-ray Powder Data File, 1950. Weissenberg photographs and single-crystal diffractometry showed a monoclinic $P2_1/c$ symmetry with the least-squares-refined cell parameters given in the *Abstract* ($\lambda = 0.71069$ Å). A powder spectrum obtained from a Guinier camera was indexed with the reported cell parameters, taking into account the single-crystal intensities (Table 1). Well-developed crystals are [001] prismatic and the following forms were detected: {100}, {110}, {010}, {011} and {111}; (101) swallow-tail twins were found.

Other data: $M_r = 267 \cdot 101$, $V = 722 \cdot 3$ Å³, $D_m = 2.423$ (Pascal, 1966), $D_c = 2.410$ Mg m⁻³, Z = 4, F(000) = 520, μ (Mo K α) = 0.92 mm⁻¹.

Intensities were collected on a Philips PW 1100 automatic four-circle diffractometer from a [001] needle crystal ($0.54 \times 0.14 \times 0.10$ mm). The measurement conditions were: Mo $K\alpha$ radiation; graphite monochromator, $\omega \leq 28^{\circ}$, $\omega/2\theta$ scan, $\Delta\omega = 2^{\circ}$, scanning speed 0.035° s⁻¹, background time 5 s on both sides of each peak, attenuating filter inserted for intensities higher than 60 000 counts s⁻¹, three © 1979 International Union of Crystallography

Table 1. Observed and calculated d spacings, indices and intensities (on an arbitrary scale) of the reflexions of the powder spectrum of $Na_3H(SO_4)_2$

Guinier camera, 4 mm = $1^{\circ} \theta$; Cu Ka radiation.

d_{obs}	$d_{\rm calc}$	h k l	$I_{\rm obs}$	d_{obs}	$d_{\rm calc}$	h k l	$I_{\rm obs}$
8.15	8.19	100	50	1.963	1.965	133	10
6.44	6.44	011	45	1.947	1.950	241	5
6.23	6.24	110	40	1.895	1.899	223	35
4.81	4.82	020	60	1.864	1.861	î 3 4	55
4.46	4.47	Ī 0 2	20	1.855	1.851	043	10
4.32	4.33	002	5	1.055	1.850	(341)	
4.22	4.21	021	45	1.847	1.848	423	10
4.15	4.16	120	5	1.831	1.834	234	5
4.09	4.09	200	3	1 000	1.829	$\frac{411}{242}$	10
4.01	4.01	121	95	1.809	1.805	342 101	10
3.95	3.95	210	05	1.785	1.787	215	40
3.11	3.61	$\frac{2}{2}$ 0 2	80	1.774	1.774	215 414	5
2 52	3.53	121	25	1.761	1.762	052	30
3.401	3.401	102	40	1.701	(1.745	(250)	-
3.266	3.277	i 2 2	25	1.741	1.738	233	5
3.203	3.208	112	75	1.734	1.737	421	25
3.110	3.121	220	10		(1.727	1502	20
3.010	3.015	031	45	1.723	1.726	1334	20
3.000	2.993	130	5	1.697	(1.700	(512	40
2.903	2.905	<u>1</u> 13	95	1 077	1.698	313	
2.891	2.890	222	100	1.676	1.678	152	10
2.769	2.780	122	5	1.649	1.649	513	5
2.763	2.765	013	75	1.635	1.638	500	2
2.730	2.732	131	100	1.627	1.630	025	40
2.635	2.636	312	40	1.603	1.502	253	40
2.627	2.626	310	10	1.568	1.560	2 3 3	30
2.605	2.010	132	70	1.557	1.560	344	25
2.383	2.380	123	10	1.331	(1.551	(514)	20
2.371	2.438	223	15	1.549	1.551	520	20
2.434	2.412	040	45	1.524	1.528	335	25
2.380	2.383	322	30	1.520	1.523	206	25
2.318	2.314	140	40	1.501	1.503	234	30
2.301	2.307	231	10	1.483	1.485	533	15
2 204	2.288	(Ī 4 1	15	1 460	(1.471	1316	10
2.284	2.282	\ī04	15	1.403	1.469	262	10
2.204	2.207	123	50	1.449	<i>[</i> 1∙452	521	20
2.186	2.186	141	5	1.447	(1.451	(145	
2.171	2.176	214	45	1.438			10
2.161	2.164	004	20	1.429			2
2.151	2.154	323	20	1.424			5
2.144	2.143	321	20	1.402			5
2.117	2.112	(11)	10	1.374			5
2.097	2.100	1911	50	1.363			15
2.077	2.079	241	15	1.353			5
2.059	2.070	1240	30	1.348			15
2.038	2.003	201	20	1.333			15
2.044	2.040	504	20	1.310			10
2.004	2.000	024	60	1.298			5
1.212	1.213	024	00				

reference reflexions. After removal of 341 reflexions with $|F_o| \leq 3\sigma(|F_o|)$ 1403 independent observations were left.*

Solution and refinement of the structure

The direct-methods program MULTAN (Germain, Main & Woolfson, 1971) revealed the two independent S atoms, four O and two Na atoms, which were then used to phase a difference map which showed all the non-hydrogen atoms. After a least-squares anisotropic refinement, the H atom was found on a difference map and then refined isotropically. At the last stage of the refinement the following weighting scheme was used, $w = (1.096 - 0.0128|F_o| + 0.0004|F_o|^2)^{-1}$, which produced 0.09 and 1.00 minimum and maximum weights, respectively, and satisfactorily constant values of Δ^2 for groups of reflexions vs $|F_0|$ and sin θ . An analysis of the function $I_c/I_o = k(1 + gI_c)$ for secondary extinction showed no effects except for the weakest reflexions which showed $|F_o| < |F_c|$ systematically, as already observed for other structures (Catti, Ferraris & Franchini-Angela, 1977). To the factors there listed as possible sources of this effect, one could add the omission of corrections for anomalous scattering and TDS and, in general, for any physical effect which is likely to have a higher per cent influence on the weak reflexions.

The refinement converged to R = 0.034 with the atomic parameters listed in Table 2. Scattering factors for neutral atoms (*International Tables for X-ray Crystallography*, 1962) and the XRAY system (Stewart, Kundell & Baldwin, 1970) were used.

Discussion

Description of the structure

The structure is dominated by a framework of Na coordination polyhedra (Table 3) built up by the intersection of two non-coplanar systems of chains. A system is confined within (010) layers at y = 0 and $\frac{1}{2}$

Table 2. Fractional atomic coordinates with significant figures of the e.s.d.'s in parentheses

	x	У	z
S(1)	0.13929 (8)	0.30906 (7)	0.85771 (7)
S(2)	0.63436 (8)	0.31874 (7)	0.40524 (8)
Na(1)	0	0	0
Na(2)	1/2	0	$\frac{1}{2}$
Na(3)	0.7453 (2)	-0.0060(1)	0.2774 (1)
Na(4)	0.3869(1)	0.1559 (1)	0.1279 (1)
O(1)	0.1547 (3)	0.1578 (2)	0.8752 (2)
O(2)	0.2554 (3)	0.3765 (2)	0.9916 (2)
O(3)	-0.0324(3)	0.3496 (2)	0.8547 (3)
O(4)	0.1596 (3)	0.3568 (3)	0.7146 (3)
O(5)	0.6162(3)	0.3648 (3)	0.5503 (3)
O(6)	0.8095 (3)	0.3375 (2)	0.4152 (3)
O(7)	0.5926 (3)	0.1718 (2)	0.3752 (2)
O(8)	0.5334 (3)	0.4044 (2)	0.2778 (3)
H(1)	-0.102 (7)	0.270 (6)	0.877 (6)

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33981 (10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

and consists of equivalent chains formed by blocks of three octahedra Na(3)–Na(2)–Na(3,2)* which are intraconnected through the face $O(2,4)^i-O(8,4)-O(7,2)^{vi}$ and its centrosymmetric $O(2,3)^{vii}-O(8,3)^{iv}-O(7)$; the blocks are bridged by the Na(1) octahedron *via* the $O(1)^i$ and $O(1,2)^{ii}$ vertices (Fig. 1). The second system of chains zig-zags along [010] and consists of Na(4) polyhedra interlinked through the O(8) and $O(8,3)^{iv}$ vertices. This type of chain is tied to the previous one both along [010], *via* O(8) which belongs to four Na polyhedra, and, within (010), by sharing (i) the face $O(5,4)^i-O(8,3)^{iv}-O(7)$ with Na(3) and the edge $O(7)-O(8,3)^{iv}$ with Na(2) of one chain; (ii) the

* A single figure in parentheses denotes an atom of the asymmetric unit; a second figure, ranging from 2 to 4, is included for atoms in the positions $\bar{x}, \bar{y}, \bar{z}$ and $\pm(\bar{x}, \frac{1}{2} + y, \frac{1}{2} - z)$. Roman numerals represent the following translations: (i) -c; (ii) c; (iii) -b; (iv) a - b; (v) - a - c; (vi) a + c; (vii) a - b + c; (viii) a - c; (ix) -a.

Table	3.	Interatomic	distances	(Å)	in	the	Na
		polyhedra;	e.s.d.'s are	0.002	Å		

$Na(1) = O(1)^{i}$	2.528	$Na(2) - O(2,3)^{vii}$	2.408
$Na(1) - O(1,2)^{ii}$ $Na(1) - O(4,3)^{iii}$ $Na(1) - O(4,4)^{i}$	2.433	$Na(2) - O(2,4)^{i}$ Na(2) - O(7) $Na(2) - O(7,2)^{i}$	2.297
$Na(1) = O(6,3)^{iv}$ $Na(1) = O(6,4)^{v}$	2.225	$Na(2) - O(8,3)^{iv}$ Na(2) - O(8,4)	2.629
Average	2.395	Average	2.445
$Na(3) - O(1,2)^{vi}$	2.370	$Na(4)-O(1)^{I}$	2.527
$Na(3) - O(2,3)^{vii}$	2.399	Na(4)–O(2) ⁱ	2.542
$Na(3) - O(3,4)^{viii}$	2.366	$Na(4) - O(4,4)^{i}$	2.348
$Na(3) - O(5.4)^{i}$	2.433	$Na(4) - O(5,4)^{i}$	2.319
Na(3) - O(7)	2.499	Na(4) - O(7)	2.391
Na(3)-O(8,3) ^{iv}	2.455	Na(4) - O(8)	2.849
Average	2.420	Na(4)-O(8,3) ^{1v}	2.593
		Average	2.510

Fig. 1. Orthogonal projection onto the plane (010) of the Na coordination polyhedra in the structure of $Na_3H(SO_4)_2$. The Na(4) polyhedra lie above (large dots) and below (small dots) the layer at y = 0 occupied by the Na(1), Na(2) and Na(3) polyhedra which are filled with dots of medium size.

The two independent S tetrahedra (Table 4) are arranged within cavities in the Na framework and form close packed but corrugated (010) layers at about $y = \frac{1}{4}$ and $\frac{3}{4}$ (Fig. 2). The tetrahedra are connected to the Na polyhedra by sharing all their corners with them and the edges O(1)-O(2) and O(7)-O(8) with the Na(4) polyhedra.

Hydrogen bonding

The S tetrahedra are grouped in $(SO_4H.SO_4)^{3-}$ dimers via the very short hydrogen bond $O(3)-H\cdots$ $O(6,4)^{ix} = 2.434$ (4) Å with O(3)-H = 1.03 (6), $H\cdots O(6,4)^{ix} = 1.40$ (6) Å and $\angle O(3)-H\cdots O(6,4)^{ix}$ = 177 (4)°. This is one of the shortest symmetry-free (Catti & Ferraris, 1974a) or type B (Currie & Speakman, 1970) hydrogen bonds ever found; its role in the building of the structure seems, however, definitely minor because of the framework of Na polyhedra. Presumably the dimer is already present in solution and the hydrogen bond acts as an intramolecular bond, as it does in all the cases of very short hydrogen bonds found in molecular compounds.

Table 4. Interatomic distances (Å) and O-S-O angles (°) in the S tetrahedra

Columns B, C and D show S–O values calculated according to Baur (1970), Ferraris & Catti (1973) and Louisnathan, Hill & Gibbs (1977), respectively (see text). E.s.d.'s are 0.002, 0.003 Å and 0.1° for S–O, O–O and angles, respectively.

	A	В	С	D
S(1)-O(1) S(1)-O(2) S(1)-O(3) S(1)-O(4) Average	1.470 1.462 1.527 1.450 1.477	1.478 1.478 1.522 1.457 1.484	1.470 1.470 1.514 1.449 1.476	1.457 1.468 1.511 1.450 1.472
$\begin{array}{c} O(1)-O(2)\\ O(1)-O(3)\\ O(1)-O(4)\\ O(2)-O(3)\\ O(2)-O(4)\\ O(3)-O(4)\\ Average \end{array}$	2 · · 2 · · 2 · · 2 · · 2 · · 2 · · 2 · ·	397 109 425 108 426 112 413 107 406 111 402 107 412 109	· 7 · 1 · 4 · 6 · 4 · 5 · 5	
	A	В	С	D
S(2)-O(5) S(2)-O(6) S(2)-O(7) S(2)-O(8) Average	1.455 1.498 1.467 1.466 1.472	1-457 1-484 1-457 1-475 1-468	1.449 1.477 1.449 1.467 1.461	1·459 1·501 1·456 1·469 1·471
O(5)-O(6) O(5)-O(7) O(5)-O(8) O(6)-O(7) O(6)-O(8) O(7)-O(8)	2·391 2·421 2·392 2·401 2·401 2·408	108 · 1 111 · 9 110 · 0 108 · 1 108 · 2 110 · 4		

It is well known that in oxyanions X-OH bonds are longer than X-O (Cruickshank, 1961), and individual values have been explained in the context of empirical theories of bond valence or bond strength (Baur, 1970; Brown & Shannon, 1973). The examination of structures containing HSO₄ oxyanions has revealed that the length of the S-OH bond is in strong linear correlation (r = 0.79, mean square error = 0.00017) with the length of the corresponding $0 \cdots 0$ hydrogen bond (Fig. 3). The effect is due to the well documented

Fig. 2. Orthogonal projection onto the plane (010) of one layer of SO_4H . SO_4 groups in the structure of $Na_3H(SO_4)_2$. Dashed lines represent the hydrogen bonds.

Fig. 3. Scatter diagram of the observed values of the bond length S-OH vs the O···O distance observed for the corresponding hydrogen bond. The equation of the regression line is calculated without the two stars (see text). (a) H₂SO₄ (Pascard-Billy, 1965); (b) (NH₃)₅CO₂Co(NH₃)₅SO₄(HSO₄)₃ (Schaefer & Marsh, 1966); (c) H₂SO₄. H₂O (Taesler & Olovsson, 1968); (e) NH₄HSO₄ (Nelmes, 1971); (f) NaHSO₄. H₂O (Pringle & Broadbent, 1965); (f') NaHSO₄. H₂O (Grimvall, 1971); (f'') NaHSO₄. H₂O (Catti, Ferraris & Franchini-Angela, 1975); (g) K_{0.55}Rb_{0.45}; HSO₄ (Mumme, 1973); (h) [Ag(C₆H₁₆N₁₀)]SO₄HSO₄. H₂O (Coghi & Pelizzi, 1975); (i) KHSO₄ (Cotton, Frenz & Mandel, 1975); (m) RbHSO₄ (Ashmore & Petch, 1975); (n) β-NaHSO₄ (Sonneveld & Visser, 1978); (o) this paper.

attraction of the H atom towards the acceptor with the consequent weakening of the O-H bond, so that the donor is forced to strengthen other bonds. In Fig. 3, structures with disorder are not reported and the regression line has been obtained without the two bonds shown as stars; they refer to earlier structures and, at least for (a), their positions in the diagram could reflect uncertainties in the structural model.

The exceptional shortness of the hydrogen bond not only makes S(1)—O(3) the shortest S—OH bond ever observed, in agreement with the trend in Fig. 3, but also forces the acceptor O(6) to form the longest S—O bond in sulphates. This represents the reverse effect of Fig. 3 and should clearly indicate that H is nearer to O(6) than shown by the X-ray results. In fact, the O(3)—H length is shorter than that expected from the O—H vs O…O correlation deduced from neutron diffraction results (Olovsson & Jönsson, 1976); it is quite long for an X-ray solution (in which O—H bonds are notoriously shortened), and is likely to be actually of the expected length, as a neutron diffraction study now in progress should clarify.

Coordination polyhedra

In spite of the unusual S–O bond lengths where the O atoms are involved in hydrogen bonds, the two S tetrahedra (Table 4) are remarkably regular as far as the O···O edges are concerned. A maximum O–O deviation of 0.6 and 0.5% (S–O, 3.4 and 1.8%; O–S–O angles, 3.7 and 2.3%) is observed for S(1) and S(2), respectively, which is in agreement with Baur's (1970) hypothesis of a central tetrahedral atom moving within a rigid framework of O atoms.

The predictive power of correlations of the S–O bond length vs the bond strength p | S-O = 1.225 + 0.128 p (Baur, 1970); S–O = 1.473 + 1.128(p-2)(Ferraris & Catti, 1973)] and vs the average value of the three O–S–O angles contiguous to S–O $| S-O = 1.035 - 0.145/\cos (\langle O-S-O \rangle_3)$ (Louisnathan, Hill & Gibbs, 1977)] has been tested. With the bond strength of the hydrogen bond distributed between O(3) and O(6) as shown in Table 5 (Lippincot–Schroeder values), the three correlations appear practically equivalent, with an average difference $| (S-O)_{calc} - (S-O)_{obs} |$ of 0.008, 0.008 and 0.007 Å (columns *B*, *C* and *D* in Table 4).

The large stoichiometric Na/O ratio requires high sharing of the oxygen atoms between coordination polyhedra; in particular, Na(2) and Na(3) polyhedra share two faces each, Na(4) one, and the edge $O(7)-O(8,3)^{Iv}$ is common to three Na polyhedra. The complete participation of the O atoms is shown in Table 5, where the bond valence, calculated according to Brown & Wu (1976) and to the Lippincot-Schroeder curve (Brown, 1976) for the hydrogen bond, is reported. The fourfold coordination of O(8) with

	S(1)	S(2)	Na(1)	Na(2)	Na(3)	Na(4)	Н	Σ
O(1)	1.52		0.15		0.20	0.15		2.02
O(2)	1.56			0.18	0.19	0.15		2.08
O(3)	1.30				0.20		0.65	2.15
O(4)	1.62		0.18			0.20		2.00
O(5)		1.59			0.18	0.22		1.99
O(6)		1.41	0.26				0.35	2.02
O(7)		1.54		0.22	0.16	0.19		2.11
O(8)		1.54		0.13	0.17	$\begin{cases} 0.09 \\ 0.13 \end{cases}$		2.06
Σ	6.00	6.08	$\begin{array}{l} 0.59 \times 2 \\ = 1.18 \end{array}$	$\begin{array}{l} 0.53 \times 2 \\ = 1.06 \end{array}$	1.10	1.13	1.00	

Table 5. Bond valence (see text)

respect to Na is certainly unusual, and the consequent very long Na-O(8) bonds are the major causes of the distortions observed, not only in the Na(4) sevencornered polyhedron but also in the Na(1), Na(2) and Na(3) octahedra.

Twinning

The small difference between a and b values is the reticular basis for ($\overline{101}$) twinning by pseudomerohedry or twin-lattice quasi-symmetry (Donnay & Donnay, 1974) with obliquity $\omega = 3.39^{\circ}$. Structurally the twinning is supported by the fact that ($\overline{101}$) is a pseudo mirror plane, at least for Na and S atoms within their respective layers (Figs. 1, 2).

The X-ray intensities were measured at the Centro di Studio del CNR per la Cristallografia Strutturale, Pavia. Research was supported by the Consiglio Nazionale delle Ricerche, Roma.

References

- ASHMORE, J. P. & PETCH, H. E. (1975). Can. J. Phys. 53, 2694-2702.
- BAUR, W. H. (1970). Trans. Am. Crystallogr. Assoc. 6, 129-155.
- BONAPACE, J. A. & MANDEL, N. S. (1975). Acta Cryst. B31, 2540–2542.
- BROWN, I. D. (1976). Acta Cryst. A32, 24-31.
- BROWN, I. D. & SHANNON, R. D. (1973). Acta Cryst. A29, 266–282.
- BROWN, I. D. & WU, K. K. (1976). Acta Cryst. B32, 1957– 1959.
- CATTI, M. & FERRARIS, G. (1974a). Acta Cryst. B30, 1-6.
- CATTI, M. & FERRARIS, G. (1974b). Acta Cryst. B30, 1789– 1794.
- CATTI, M., FERRARIS, G. & FRANCHINI-ANGELA, M. (1975). Atti Accad. Sci. Torino, 109, 531–545.
- CATTI, M., FERRARIS, G. & FRANCHINI-ANGELA, M. (1977). Acta Cryst. B33, 3449–3452.
- CATTI, M., FERRARIS, G. & IVALDI, G. (1978). Acta Cryst. B34, 369–373.
- CHOMNILPAN, S., TELLGREN, R. & LIMINGA, R. (1978). Acta Cryst. B34, 373–377.
- COGHI, L. & PELIZZI, G. (1975). Acta Cryst. B31, 131-134.

- COTTON, F. A., FRENZ, B. A. & HUNTER, D. C. (1975). Acta Cryst. B31, 302–304.
- CRUICKSHANK, D. W. J. (1961). J. Chem. Soc. pp. 5486-5504.
- CURRIE, N. A. & SPEAKMAN, J. C. (1970). J. Chem. Soc. A, pp. 1923–1925.
- DONNAY, G. & DONNAY, J. D. H. (1974). Can. Mineral. 12, 422–425.
- FAUST, O. & ESSELMANN, P. (1926). Z. Anorg. Chem. 157, 290–298.
- FERRARIS, G. & ABBONA, F. (1972). Bull. Soc. Fr. Minéral. Cristallogr. 95, 33-41.
- FERRARIS, G. & CATTI, M. (1973). Acta Cryst. B29, 2006–2009.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- GRIMVALL, S. (1971). Acta Chem. Scand. 25, 3213-3219.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

- JÖNSSON, P. G. & OLOVSSON, I. (1968). Acta Cryst. B24, 559–564.
- LOUISNATHAN, S. J., HILL, R. J. & GIBBS, G. V. (1977). Phys. Chem. Miner. 1, 53-69.
- McGregor, D. R., Speakman, J. C. & Lehmann, M. S. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1740–1746.
- MUMME, W. G. (1973). Acta Cryst. B29, 1076-1083.
- NELMES, R. J. (1971). Acta Cryst. B27, 272-281.
- OLOVSSON, I. & JÖNSSON, P. G. (1976). The Hydrogen Bond, edited by P. SCHUSTER, G. ZUNDEL & C. SANDORFY, pp. 395–456. Amsterdam: North Holland.
- PASCAL, P. (1966). Nouveau Traité de Chimie Minérale. Vol. II. Paris: Masson.
- PASCARD-BILLY, C. (1965). Acta Cryst. 18, 827-829.
- PHILIPPOT, E., RICHARD, P., ROUDAULT, R. & MAURIN, M. (1972). Rev. Chim. Minér. 9, 825–835.
- PRINGLE, G. E. & BROADBENT, T. A. (1965). Acta Cryst. 19, 426–432.
- SCHAEFER, W. P. & MARSH, R. E. (1966). Acta Cryst. 21, 735-743.
- SONNEVELD, E. J. & VISSER, J. W. (1978). Acta Cryst. B34, 643–645.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- SUZUKI, S. & MAKITA, Y. (1978). Acta Cryst. B34, 732-735.
- TAESLER, I. & OLOVSSON, I. (1968). Acta Cryst. B24, 299-304.
- WILLIAMS, J. M., DOWLING, N., GUNDE, R., HADŽI, D. & OREL, B. (1976). J. Am. Chem. Soc. 98, 1581–1582.